In Situ Instruments and MEMS Breakout Group

Participants:

- E. Tubbs, L. Dorsky, M. Hecht (JPL)
- T. Kenny, T. Pfafman (Stanford)
- N. Eaker (SwRI)
- D. Cardarelli (MSSA)
- D. Johnson (TiNI Alloy Co.)
- V. Kantsioras (Hughes)

Objectives:

- Identify new technology directions for the IPDT outside the expertise of current members
- Suggest new mission types which meet IPDT validation needs
- Discuss member selection process

Sensor Network Architectures

What?

- A network to allow for flexible configurations of: mechanical sensors (e.g. strain gage) for deployment, impact damage, structural degradation; contamination monitors; fields; voltages; temperatures and pressures; leaks;, etc.
- Possible implementation as wireless or plug & socket devices meeting specific interface, mechanical, electrical, thermal specifications.
- Recognize two distinct varieties science networks and health networks. Limit scope to health networks because science nets are likely to be too application specific (see "building blocks")

Sensor Network Architectures (cont.)

Why?

- Want to have *many* sensors to allow for condition-based maintenance, "remote agent" functions.
- Want *negligible* impact of sensors on spacecraft to allow for late addition of sensors to address hardware deficiencies (Galileo antenna?)

Possible Validation

 A network with sockets for a specific number of modular sensors with designated interface protocol.
Sensor suite to be selected and provided during ATLO.

Electronic Building Blocks

What?

 Catalog and/or inventory of ASICS, protocols, packages for instruments (e.g. ASICS for pulse height analysis, temperature regulation)

Why?

• Encourages developers to design instruments around electronics (much as they are designed around processors or power supply conventions).

Actuators

What?

• Flexures, small inflatables, vacuum pumps and manipulators, magnetic & optical, bimetals, phase transition (shape memory, thermopneumatic), reaction wheel

Why?

• Sampling, deployment, mobility, pointing, separation, devices

Other Topics

- Micro-robotics
- Navigation grade accelerometers
- Preservation methods for sample return
- In situ age dating

Technology Development Announcement

Suggestions

- Maintain short format, narrow scope, clarify expectations
- Encourage small business
- Give more indication of potential funding for flight validation (0.2-2.0 \$M?)
- Broaden "applicability" criterion to emphasize building blocks, pipeline technologies
- Broaden "maturity" criterion to include 5-10 year lead time items
- Broaden "capability" criterion to include team applications (same institution)

Possible Validation flights

Overview

- MEMS technologies, particles & fields can be validated on most mission types
- Piggyback missions (SQUIRTS, MightySats, etc.) are ideal for MEMS validation
- Principal need is for opportunities to validate physical & chemical science sensors/instruments

Suggestions

- Sample selection & return (the moon?)
- Small body flyby with impact probes (like DS-1 with possible solar sail?)
- Networks of microlanders
- Aerobot